cell INPUT yes screen OUTPUT lf swiss13 on ~\n 1 nolist fmt \n\N\n\S\n yes test 1 yes fixed 3 degrees off 5.000 -5.000 5.000 -5.000 5 5 home,home a00 5 a01 6 a02 -7 a03 8 a10 0.800 a11 -8.800 a12 22.600 a13 -3.400 a20 0.400 a21 -0.182 a22 15.909 a23 -5.818 a30 0.200 a31 -0.091 a32 0.406 a33 -3.549 b0 -0.134 b1 0.779 b2 -0.151 b3 -0.258 big 0.887 dum 0.887 home This web solves a non-singular set of four linear equations in four unknowns: a00*x0+a01*x1+a02*x2+a03*x3=b0 a10*x0+a11*x1+a12*x2+a13*x3=b1 a20*x0+a21*x1+a22*x2+a23*x3=b2 a30*x0+a31*x1+a32*x2+a33*x3=b3 using an LU decomposition algorithm. To print solution values of x0,x1,x2,and x3, put the values of the aij elements in row/column order into the text field of the input cell. Put the four b's after that. Then return to home and choose execute from the special menu. The algorithm for this example is described in the First edition of "Numerical Recipies in C", Section 2.3 LU Decomposition. idex 0.000 ii 0 imax 3.000 indx0 1.000 indx1 2.000 indx2 3.000 indx3 3.000 input 1 2 3 - 4 #row1 5 6 -7 8 #row2 4 -4 17 3 #row3 2 4 9 -2 #row4 2 3 -7 2 0.00 ip 3.000 jdex 3.000 kdex 2.000 loop1 loop2 loop3 lubksb ludcmp matrixout output scale solve sum -0.672 temp 2.000 tiny 0.0000000001 vv0 0.250 vv1 0.250 vv2 0.250 vv3 0.250