cell inputy no screen OUTPUT lf swiss8 off ~\n 1 nolist fmt \n\N\n\S yes 1 yes fixed 2 degrees off 5.00 -5.00 5.00 -5.00 5 5 home,home cdx 1.00 home The script of the home cell of this web inputs from the text field of cell inputm the values of the matrix elements: m11 m12 ... m14 m21 m22 ... m24 ........ ........ ... ....... m41 m42 ... m44 Then it inputs from the text field of cell inputy the values of the right side matrix: y11 y12 y21 y22 y31 y32 y41 y42 Then it calls the builtin function: gaussj("m11",4,"y11",2) with four arguments: "m11" Quoted name of the first cell in the 4x4 matrix 4 Number of rows and columns in the matrix "y11" Quoted name of the first cell in the y matrix 2 Number of columns in the y matrix If the function returns zero, the solutions to the four equations: m11*w+m12*x+m13*y+m14*z=y11 m21*w+m22*x+m23*y+m24*z=y21 m31*w+m32*x+m33*y+m34*z=y31 m41*w+m42*x+m43*y+m44*z=y41 and the four equations: m11*p+m12*q+m13*r+m14*s=y12 m21*p+m22*q+m23*r+m24*s=y22 m31*p+m32*q+m33*r+m34*s=y32 m41*p+m42*q+m43*r+m44*s=y42 are contained in the y matrix. w=y11 p=y12 x=y21 q=y22 y=y31 r=y32 z=y41 s=y42 gaussj() returns -1 if the matrix m is singular. inputm 1 2 -3 7 -6 21 14 1 2 10 -3 4 -7 -2 1 2 inputy 1.7 14 2.1 -5.6 13 -2 21 -7 m11 0.09 m12 0.01 m13 -0.08 m14 -0.16 m21 -0.06 m22 0.01 m23 0.10 m24 0.01 m31 0.12 m32 0.06 m33 -0.18 m34 -0.09 m41 0.20 m42 0.02 m43 -0.09 m44 -0.02 OUTPUT Coefficient Matrix: 1 -6 2 -7 2 21 10 -2 -3 14 -3 1 7 1 4 2 Right side Matrix: 1.7 13 14 -2 2.1 21 -5.6 -7 Solution vectors: -4.33 -3.86 2.51 2.27 1.50 -1.22 -1.20 2.96 outputm for(rdx=0 to %1-1) { for(cdx=0 to %2-1) { out(m11[%1*cdx+rdx]," ") } out("\n") } outputy rdx 3.00 y11 -4.33 y12 2.51 y13 1.50 y14 -1.20 y21 -3.86 y22 2.27 y23 -1.22 y24 2.96