Overview

PsiWin uses installable file translators to support the translation of native Psion application files to and from Windows application file formats. Installable file translators are implemented as Windows 3.1 16�bit DLL's and delivered as .PXL files in the PSIWIN\CONVERT directory. Each translator's name and capabilities is specified through it's "PSPD" resource. One .PXL file implements translation between one Psion native format and one Windows application format.

To implement an installable translator you will need to:

•	Become familiar with the Psion native format and corresponding Windows application format to be exchanged

•	Generate a "PSPD" resource to identify your translator to PsiWin

•	Implement an XLInstall() function if your translator will be conditionally installed, for example, only installed if MAPI is implemented.

•	Implement an XLSelectApp() function to identify files that your translator can import to Psion.

•	Implement an XLSelectFormat() function to identify Psion files that your translator can export to Windows.

•	Implement an XLImport() function to translate a Windows file to a Psion format.

•	Implement an XLExport() function to translate a Psion file to a Windows format.

•	Implement an XLGetLastErrorMsg() function to report errors

�
Filling out the "PSPD" resource

The PSPD resource identifies an installable translator and describes the associated Psion and Windows file formats. It includes:

Flags�
Flags indicate the functionality of the translator. The following flags are defined:

0x0001	Use the XLInstall() function to sense if this translator should be installed.

0x0010	This translator can overwrite files on import to Psion

0x0020	This translator can append to files in import to Psion

0x0040	This translator can merge into files on import to Psion (Not Supported)

0x0100	This translator can overwrite files on export from Psion

0x0200	This translator can append to files in export from Psion

0x0400	This translator can merge into files on export from Psion (Not Supported)

All other flags are reserved for future use and should be set to 0.�
�
Application Name

(63 chars max)�
A string that names the Windows application format, for example "Lotus 1-2-3 (*.WK1)"�
�
Application Class�
A string that names the class of format. Class name is used in the Windows format identification process to identify formats that may be related. A format class name can take the format <classname>:<subclassname>. For example "dBase:Act! 2.0"is the class name for the Act! 2.0 Names and Dates translators. The "dBase:" indicates that these are subclasses of the dBase format since in fact Act! is a DBase based application. In practice this means that a file recognized as dBase will be considered for recognition as Act! 2.0 Names or Dates. It futher means that a file recognized as Act! 2.0 Names is also recognized as Act! 2.0 dates since they have identical class names.�
�
Application Extension�
A string to use in filtering candidate files by filename extension. Should be "*.xxx" where xxx is the extension.�
�
Psion Application Name

(31 chars max)�
The name of the Psion application supported by this translator, for examle "Sheet" for the Psion spreadsheet.�
�
Psion Directory�
The name of the directory where this Psion application's documents are stored, for example "\DAT\" for the Psion database.�
�
Psion Extension�
The filename extension for this Psion application's documents, for example "AGN" for the Psion agenda.�
�

�
Following is an example PSPD

#define		PATH_INSTALL			0x0001

#define		PATH_SELECT_APP			0x0002

#define		PATH_SELECT_FORMAT		0x0004

#define		PATH_IMPORT_REPLACE		0x0010

#define		PATH_IMPORT_APPEND	 	0x0020

#define		PATH_IMPORT_MERGE			0x0040

#define		PATH_EXPORT_REPLACE		0x0100

#define		PATH_EXPORT_APPEND		0x0200

#define		PATH_EXPORT_MERGE			0x0400

1	PSPD

{

	PATH_SELECT_APP |

	PATH_IMPORT_REPLACE |

	PATH_SELECT_FORMAT |

	PATH_EXPORT_REPLACE,

	"Lotus 123 (*.WK1)\0Lotus WKS\0",

	"*.WK1\0",

	"Sheet\0",

	"\\SPR\\\0",

	"SPR\0"

}

XLInstall() function (Optional)

int WINAPI XLImport(LPSTR lppspd)

The optional XLInstall() function is called to allow a translator to sense if it should appear as an available translator. The function will only be called if bit 0x0001 is set in the flags word in the "PDPD" resource. XLInstall() is passed a read-only copy of the "PSPD" resource. It returns a possibly modified set of flags or zero to indicate that the translator is not to be installed.

Most translators will not need an XLInstall() function. A trivial XLInstall function(), one that simply returns the flags word verbatim from the "PSPD", will fail to install if an imported .DLL is not present.

The trivial XLInstall function is as follows:

int WINAPI XLInstall(LPSTR lppspd)

{

	return *(int *) lppspd;

}

�
XLSelectApp() function (Required for Import to Psion)

int WINAPI XLSelectApp(LPSTR filename)

The XLSelectApp() function is called to sense if the file filename is in the Windows application format supported by this translator. This function should examine the indicated file and return an identification code as follows:

0	The file is not this application format

1	The file is probably this application format. This response is appropriate for formats that may be indefinite such as Ascii text.

2	This file is definitely this application format.

3	This file is definitely this application format, but it cannot be translated because it is password protected.

XLSelectFormat() function (Required for Export from Psion)

int WINAPI XLSelectFormat(LPSTR filename)

The XLSelectFormat() function is called to sense if the file filename is in the Psion application format supported by this translator. This function should examine the indicated file and return an identification code as follows:

0	The file is not this Psion format

1	This file is definitely this Psion format.

-1	This file is definitely this Psion format, but it cannot be translated because it is password protected.

XLImport() function (Required for Import to Psion)

BOOL WINAPI XLImport(XMINFO FAR *info, LPSTR sourceFile,

				LPSTR resultFile, int xferMode,

				XMSTATPROC statusRtn)

The XLImport() function is called to translate the Windows application file sourceFile to the Psion format file resultFile handling the transfer per the xferMode requested. The available transfer modes are as follows:

	1	Overwrite

	2	Append

	4	Merge/Update (Not Supported)

The XMINFO structure provides context information useful for the translator including the current PsiWin username.

During the translation, the statusRtn should be called regularly to report the status of the translation as a percentage complete. If the statusRtn returns FALSE, then the translation should be cancelled.

XLImport should return TRUE if sucessful and FALSE otherwise. If the translation fails, a suitable error message should be available through the XLGetLastErrorMsg() function.

�
XLExport() function (Required for Export from Psion)

BOOL WINAPI XLExport(XMINFO FAR *info, LPSTR sourceFile,

				LPSTR resultFile, int xferMode,

				XMSTATPROC statusRtn)

The XLExport() function is called to translate the Psion format file sourceFile to the Windows application file resultFile handling the transfer per the xferMode requested. The available transfer modes are as follows:

	1	Overwrite

	2	Append

	4	Merge/Update (Not Supported)

The XMINFO structure provides context information useful for the translator including the current PsiWin username.

During the translation, the statusRtn should be called regularly to report the status of the translation as a percentage complete. If the statusRtn return FALSE, then the translation should be cancelled.

XLExport should return TRUE if sucessful and FALSE otherwise. If the translation fails, a suitable error message should be available through the XMGetLastErrorMsg() function.

XLGetLastErrorMsg() function (Required)

int WINAPI XLGetLastErrorMsg(LPSTR msg, int nMsg)

The XLGetLastErrorMsg() function is called following an unsuccessful translation to obtain a suitable error message. The error message should be placed in the buffer msg for a maximum of nMsg characters, including the trailing "\0".

�
PSIWINXL.H

The pertinent definitions for a translator developer are found in the PSIWINXL.H header file. Following is a copy.

/*	PSIWINXL.H	-	PsiWin External Translator API Definition	*/

/*	Copyright DataViz, Inc, 1994 - All Rights Reserved.			*/

/*	Revision History

	09-09-94	Original - CAS

*/

#ifndef	_INC_PSIWINXL

#define	_INC_PSIWINXL

#ifdef __cplusplus

	extern "C" {

#endif

#include	<windows.h>

//	PSPD Flag definitions

#define		PATH_INSTALL			0x0001

#define		PATH_SELECT_APP			0x0002

#define		PATH_SELECT_FORMAT		0x0004

#define		PATH_IMPORT_REPLACE		0x0010

#define		PATH_IMPORT_APPEND	 	0x0020

#define		PATH_IMPORT_MERGE		0x0040

#define		PATH_EXPORT_REPLACE		0x0100

#define		PATH_EXPORT_APPEND		0x0200

#define		PATH_EXPORT_MERGE		0x0400

#define		PATH_SYNCHRONIZE		0x1000

#define		PATH_FROM_CLIPBOARD		0x0080

#define		PATH_TO_CLIPBOARD		0x0800

		

#define		PATH_TO_PSION			0x0070

#define		PATH_FROM_PSION			0x0700

typedef struct tagXMINFO

{

	HWND		hwndHost;

	HINSTANCE	hInstXM;

	LPSTR		pszHostName;	// PsiWin User Name

	char		wdrName[16];	// WDR for new Psion Files

}	XMINFO, FAR *LPXMINFO;

typedef	BOOL	(WINAPI *XMSTATPROC)(int);

WORD WINAPI XLInstall(LPSTR lpPSPD);

/*

	This routine is called to conditionally install the translator. It

	returns the pathFlags WORD for this translation path or zero

	if the translator is NOT to be installed.

	lpPSPD points to the resource that describes this translator.

*/

int WINAPI	XLSelectApp(LPSTR fileName);

/*

	This routine answers whether the indicated file is the application

	format exchanged by this translation path.

	Returns:

	0	The file is not this application format

	1	The file may be this application format

	2	The file is definitely this application format

	3	The file is definitely this application format, but is

		password protected

*/

int WINAPI	XLSelectFormat(LPSTR fileName);

/*

	This routine answers whether the indicated file is of the OEM

	format exchanged by this translation path.

	Returns:

	-1	The file is this OEM format, but is password protected

	0	The file is not this OEM format

	1	The file is definitely this OEM format

*/

BOOL WINAPI	XLImport(LPXMINFO xminfo, LPSTR sourceFile, LPSTR resultFile, WORD xferMode,

						XMSTATPROC statusRtn);

/*

	This routine imports from the sourceFile to the indicated resultFile

	per the requested transfer mode. The available transfer modes are

	1 - Overwrite

	2 - Append

	4 - Merge/Update

	8 - Synchronize

	Translation status is reported as a percent complete by calling the

	statusRtn. A statusRtn return of TRUE indicates that the translation

	should be cancelled.

	Returns TRUE if the translation is sucessful, FALSE otherwise.

*/

BOOL WINAPI	XLExport(LPXMINFO xminfo, LPSTR sourceFile, LPSTR resultFile, WORD xferMode,

						XMSTATPROC statusRtn);

/*

	This routine exports from the sourceFile to the indicated resultFile

	per the requested transfer mode. The available transfer modes are

	1 - Overwrite

	2 - Append

	4 - Merge/Update

	8 - Synchronize

	Translation status is reported as a percent complete by calling the

	statusRtn. A statusRtn return of TRUE indicates that the translation

	should be cancelled.

	Returns TRUE if the translation is sucessful, FALSE otherwise.

*/

int WINAPI	XLGetLastErrorMsg(LPSTR msg, int nMsg);

/*

	This routine copies the error message string associated with the

	last error to the indicated buffer transfering up to nMsg bytes

	including the trailing '\0' character.

	Returns the length of the string returned or 0 if there is no last

	error.

*/

BOOL WINAPI	_export	XLCopy2ClipBoard(LPXMINFO info, LPSTR sourceFile);

/*

 	This routine xlates the sourcefile into RTF (or WKS) format and TEXT format and

 	then it copies them into CLIPBOARD.

 	

	Returns TRUE if the translation is sucessful, FALSE otherwise.

*/

BOOL WINAPI	_export	XLPasteFromClipBoard(LPXMINFO info, LPSTR targetFile);

/*

	This routine pastes either the RTF (or WKS) or the TEXT data format of the

	CLIPBOARD into the targetFile.

	

	Returns TRUE if the translation is sucessful, FALSE otherwise.

 	

*/

typedef	WORD (WINAPI *XLINSTALLPROC)(LPSTR);

typedef int (WINAPI *XLSELECTPROC)(LPSTR);

typedef	BOOL (WINAPI *XLXLATEPROC)(LPXMINFO, LPSTR, LPSTR, int, XMSTATPROC);

typedef	int (WINAPI *XLERRORPROC)(LPSTR, int);

typedef	BOOL (WINAPI *XLCOPYCLPPROC)(LPXMINFO, LPSTR);

typedef BOOL (WINAPI *XLPASTECLPPROC)(LPXMINFO, LPSTR);

typedef	int	 (WINAPI *XRSELECTPROC)(LPSTR, LPSTR);

#ifdef __cplusplus

	}

#endif

#endif	//	_INC_PSIWINXL

PsiWin - How to write an installable translator

	Page �page �6� of �numpages �8�

