PsiWin translation API

Overview

General

PsiWin includes a standalone file translation library. Using the API to this library, a legitimate owner of PsiWin can programmatically translate DOS and Windows application files to appropriate Psion formats, or vice versa.

The file converters themselves are part of PsiWin and may not be redistributed in any form.

This API information is supplied "as-is" and is unsupported. Psion disclaim any liability for the use of this information.

Sample 'C' code is provided in CONVERT.TXT, and BASIC in CONVERT.BAS.

(The file format translation library can also be extended by third-parties to support new DOS, Windows and Psion application file formats. This is not described here.)

Translation Paths

Each file format translator or translation path supports the translation of files between one PC application file format and one Psion native file format. Applications that use compound file formats, such as Lotus Organizer are supported by more than one translator, each one handling one inherent Lotus Organizer format, such as the Calendar and one Psion native format, such as the Agenda.

Terminology

The API uses the following conventions:

App - PC Application

Format - PSION Formats

Path - Translation Paths

Selecting a Translation Path

The selection of a translation path is accomplished by using information about the files to be translated and the formats they are to be translated into to select a unique translator. For example, to import a PC file, the translation manager would:

1.	Initialise the Translators - XMOpen

2.	Set the translation direction - XMSetDirection

3.	Get the translators to examine the file - XMSelectApp

4.	The file may be recognised by more than one converter - e.g. there are two text formats (DOS and Windows have different character sets). If this is the case the application must select the appropriate format - use XMGetAppName and XMSetApp functions to do this.

5.	At this stage the source has been uniquely determined. Now it's possible that the selected file could be converted to one or more formats. Use XMCountFormats and XMGetFormatInfo to find out what the choices are.

6.	At last the translation Path can be uniquely determined. - XMSetPath

7.	Check the transfer modes available to this translation path with XMGetTransferMode

8.	Import the file and check the error return. - XMImport, XMGetLastErrorMsg

9.	It's done - use XMClose to sign off.

Throughout the translator selection process, PsiWinXM maintains three lists: one of possible PC applications, one of possible PSION native formats and one of possible translation paths. If the source file and direction alone are not sufficient to select a unique translation path, the API can provide the names of remaining possible PC applications and/or Psion native formats for the user to make a selection.

Note: since at any point in the conversion process you can obtain a list of the available translation paths, it is possible to avoid steps 4 and 5 by listing the available paths and picking one - using XMCountPaths, XMGetPathInfo and XMSetPath. As, in step 4, the source app has been chosen, there are the same number of Paths as Formats so the Format number corresponds to the path wanted.

Performing a translation

Once a translation path and result file name has been selected, PsiWinXM is directed to run the translation, either Importing to a Psion native format or exporting to a DOS or Windows application format. During the translation, the translator will periodically callback to the Hosting application to report translation progress and accept the user's request to cancel the translation. Should an error occur during translation, the hosting application is notified and can retrieve an error message from PsiWinXM.

API Calls

Initialization

HXM XMOpen(LPSTR psionName, LPSTR xlateFolder, HWND hParent)

XMOpen initialises a connection with the translation manager. PsiWinXM searches the indicated xlateFolder for translator and translator preference modules. The psionName is used to track any preferences or past usage patterns by user. If psionName is NULL, a "Guest" user will be assumed. hParent identifies a window to "own" any dialogs that may be created by PsiWinXM's translators or preference components. XMOpen returns a global handle to be used in subsequent calls to the translation manager. If the initialisation fails for any reason, XMOpen returns a NULL handle.

BOOL XMClose(HXM hXM)

XMClose terminates the connection with the translation manager represented by the connection handle hXM and releases any resources associated with the connection. XMClose returns TRUE if the termination is successful and FALSE otherwise.

Queries

Often, the user must make a selection of Psion format or PC application to work with. The following query functions are provided to support the generation of lists from which to make a selection.

int XMCountFormats(HXM hXM)

XMCountFormats returns the number of possible Psion formats at this stage of the translator selection.

BOOL XMGetFormatInfo(HXM hXM, int nFormat, PFINFO FAR *lpinfo)

XMGetFormatInfo fills in the PFINFO structure with details about the nFormat'th possible Psion format. This structure includes the name of the Psion application as well as the filename extension it uses and its default document directory.

int XMCountApps(HXM hXM)

XMCountApps returns the number of possible PC application formats at this stage of the translator selection process.

int XMGetAppNameLen(HXM hXM, int nApp)

XMGetAppNameLen returns the length of the bytes of the PC application name corresponding to nApp. nApp identifies one of the pssible PC applications at this stage of the translator selection process.

int XMGetAppName(HXM hXM, int nApp, LPSTR appName, int nName)

XMGetAppName returns the PC application name corresponding to nApp in the buffer appName up to a maximum of nName characters. XMGetAppName returns the length of the C string copied to appName.

int XMGetFilterLen(HXM hXM)

XMGetFilterLen returns the length of the COMMDLG filter string representing the current set of possible PC applications.

int XMGetFilter(HXM hXM, LPSTR filterBuf, int nFilter)

XMGetFilter returns the current COMMDLG filter in filterBuf up to a maximum of nFilter characters. XMGetFilter returns the number of characters actually returned in filterBuf.

int XMCountPaths(HXM)

XMCountPaths returns the number of possible translators at this stage of the translator selection process.

BOOL XMGetPathInfo(HXM hXM, int nPath, XMPATH FAR *lpinfo)

XMGetPathInfo fills in the XMINFO structure with details about the nPath'th possible translator at this stage of the translator selection process. The information provided includes the names and indexes of the PC application and Psion format handled by this translator as well as a set of flags indicating translator attributes.

Selecting a translator

The selection of a specific translator is accomplished by reducuing the available choices until only one remains. The choices can be reduced by specifying the direction of transfer and the file formats to be exchanged. When the file to be transfered is known, it also can be examined to restrict the choice of translators.

The following calls support this narrowing process.

BOOL XMSetDirection(HXM hXM, int direction)

XMSetDirection begins the process of selecting a translator by restricting the choice of translators to those suitable for import or for export. Setting the direction clears any selections of a Psion Format or PC application to exchange.

BOOL XMSetFormat(HXM hXM, int nFormat)

XMSetFormat further restricts the choice of translation paths by indicating the Psion format to be exchanged. The direction of transfer should already be set as resetting the direction of transfer will clear the choice of Psion format to be exchanged.

BOOL XMSetApp(HXM hXM, int nApp)

XMSetApp restricts the choice of translators by selecting the PC application format to be exchanged. The direction of transfer should already be set as resetting the direction of transfer will clear the choice of PC application format to be exchanged.

int XMSelectApp(HXM hXM, LPSTR fileName)

XMSelectApp asks each currently allowed translator in turn to examine the indicated file and answer whether or not it can translate the file. The return value indicates either the number of possible translation paths left to choose from or and indication of a problem. A return value of 0 indicates that NO translator can handle the file. A return value of -1 means that the file is password protected and therefore cannot be translated.

int XMSelectFormat(HXM hXM, LPSTR fileName)

XMSelectFormat uses the available translation paths to determine the Psion format of the indicated file. The return value will be the one-based index of the associated Psion format if the file is recognized and can be translated. A return value of 0 means that this file's format is unknown. A return value of -1 means that the file is password protected and therefore cannot be translated.

BOOL XMSetPath(HXM hXM, int nPath)

XMSetPath makes the final translator selection by identifying one of one or more translation paths.

Import/Export

Once a translator has been selected, the selection is indicated via XMSetPath. At this point, a result file name for the translation will be selected. Depending on the transfer modes supported by the translator selected, the result file may be handled differently. Translators can support one or more of the following transfer modes. (Translators do support more than Overwrite or Append access. Specifically, translations to Lotus Organizer and Act! will support both Overwrite and Append access.)

	Overwrite	The translator will replace an existing file or create a new one

	Append		The translator will add its data to an existing file

	Merge		The translator will merge the source file into an existing file

	Synchronize	The translator will logically synchronize the result file with the source file.

int XMGetTransferMode(HXM hXM)

XMGetTransferMode returns the available transfer modes for the selected translator.

BOOL XMImport(HXM hXM, LPSTR sourceFile, LPSTR resultFile,�				int xferMode, XMSTATPROC statusRtn)

XMImport uses the current translation path to translate the indicated file using the indicated transfer mode, the translation is from a PC application to a Psion format. The statusRtn points to a routine that will be called back to report the status of the translation as a percentage completed and to accept a request to cancel the translation.

BOOL XMExport(HXM hXM, LPSTR sourceFile, LPSTR resultFile,�				int xferMode, XMSTATPROC statusRtn)

XMExport uses the current translation path to translate the indicated file using the indicated transfer mode, the translation is from a Psion format to a PC application. The statusRtn points to a routine that will be called back to report the status of the translation as a percentage completed and to accept a request to cancel the translation.

Error Reporting

Most PsiWinXM API calls return FALSE in case of an error. An appropriate error message is also accessible via the API as follows:

int XMGetLastErrorMsg(HXM hXM, LPSTR szMsg, int nMsg)

XMGetLastErrorMsg places an error message in szMsg of up to nMsg characters based on the last error which has occurred and returns the actual length of the message copied to szMsg

