Mobile Computing with Python

James “Wez"” Weatherall & David Scaott,
Laboratory for Communications Engineering,
Cambridge,
England,
{inw22, djs55}@eng.cam.ac.uk

Abstract

This paper describes MoPy, a port of the Python 1.5.2 ingéepito the Psion
5/Epoc32 platform and Koala, a CORBA-style Object RequedtEvent Broker
implemented natively in Python. While primarily a direct 8BX-based port of the
standard Python interpreter, MoPy also adds thread, sacikserial support for
the Psion platform. The Koala ORB is designed particulaiiywioPy in mind
and aims to support interoperation of devices over the lowgr Prototype Em-
bedded Network. The low-power requirements of PEN imposersebandwidth
and latency penalties to which conventional RPC technetogre not typically
well suited.

1 Introduction

Recent advances in wireless communications and embeddeggsor technology have
paved the way for tetherless, intelligent embedded dev@ester into everyday use.
Already technologies such as BlueTooth[2] and WAP[19] émaisers to read their
email, browse the web and link their various computatioradices without physical

network connections. This paper describes some key featfr&oala, an Object

Request and Event Broker written natively in Python andgitesi for use on handheld
and wireless devices, and MoPy (Mobile Python), a Pythaerjmeter for the Psion 5
Series[14].

The PEN project[1] at AT&T Laboratories Cambridge explates future possibil-
ities of embedded low-power wireless communications stppdioth conventional
computer equipment and everyday appliances, with a viewdwiging totally ubiqg-
uitous interaction between devices. The prototype uniestbe 418MHz band and
provide 24kbps throughput over a 5 metre radius, with powanagement allowing a
unit to operate for several years on a single cell, subjeentoronmental conditions.
The PicoRadio[15] and Hyphos[13] projects are examplegstems with similar de-
sign goals to PEN.

One example of ubiquitous device interaction is that of aegiememote controller
interacting with its environment. The controller would asta mobile, untethered user
interface, with wireless access via PEN to all the locallgi@ble devices. These might

www.manaraa.com

range from simple light and temperature sensors, througpsand window blinds, to
a PC’s MP3 jukebox or a hi-fi.

An ideal platform to act as the remote controller is the Psigyaniser. The device
is compact, low-power, and already provides a number ofulsgfplications. A PEN
node may be attached to the serial port of the Psion and usedeta/ork interconnect.
The Psion then runs client-side software which can use tde tmscan the local area
for other nodes and to communicate with them.

The Psion can use the connection to pull email from its u$elders when he is in
the office, and can then push that email out to a display indrisal while tucked away
in his briefcase or sitting on his desk. It can use the conthihformation inherent
from the short range of the radio link to decide when the usat home, on their bike
or in the office for example, and reconfigure neighbouringgaent accordingly.

1.1 Follow-me-MP3

A popular demonstration for many distributed multimedia @ensor systems is that
of “follow-me audio”. In this example, a user roams aroundidding populated with
speakers connected to networked PCs. A central MP3 arabdsfaudio to the speak-
ers nearest the user, across the network, so that theirmmedio preference accom-
panies them wherever they go.

Using MoPy and Koala, we can extend this example. Our useesdris standard
Psion 5 organiser, as he would normally, except that hisrosgahas a tiny PEN node
attached to it’s serial port An example screen-shot is given in figure 1.

As the user moves around the building, the PEN node will bérecticontact with
only a few devices — only those within a 5-10 metre radius -evailhg it to establish
a rough idea of proximity. The Psion can monitor this proxjimmetric and contact
the nearest speakers, telling them to connect to the MP®@keThe previously used
set of speakers can disconnect automatically when the Psioumt of radio range, or
can be made to disconnect by an RPC to the speaker, throudbveayanto the wired
network.

Because the Psion is independent of the wired infrastracthe user can have a
similar but separate network within his home. The mobileickeean detect that itis in
the home and reconfigure accordingly, to use the home jukegtib&r than the (perhaps
unreachable from home) office one, for example.

1.1.1 Follow-me-MP3Implementation

The Follow-me-MP3 example has been implemented as a teeshbapplication run-
ning under MoPy on the Psion 5mx and under the standard Pydtstribution for
Linux. The devices communicate via PEN nodes attached o ghaal ports. The
Linux device runs an MP3 jukebox and a “speaker” applicatimth made available
to the Psion over the PEN network using the Koala ORB desttigéow. The Psion
then runs a controller application which imports interfate the jukebox and speaker
and accesses the two entities via the Koala ORB.

1The current PEN prototypes are almost the same size as e iBsilf. In principle, though, there is no
reason why very tiny embedded versions cannot be built

www.manaraa.com

Figure 1: Screen-shot of a Wireless Follow-me-MP3 Corgroll

In this system, our primary interest is in the design of th@ldcORB, which in-
terfaces between a high-level communications model antbtirdevel PEN network
interface. This is supported on the Psion platform by thesigment of the MoPy
interpreter, which provides a standard python environmawbiding the need for a
separate development environment and/or Koala implertienta

1.2 Further Applications

In addition to the roaming MP3 example described above,rabe¢her applications
have been prototyped using the system, of which two are itbestbelow.

1.2.1 Home Control

A rudimentary home control system has been built using thd, 0Py and Koala
systems combined. For this application, home applianagsasilights, blinds, sensors
and switches are connected directly to PEN nodes. Eachalesés the standard Koala
protocol to make itself available via the PEN network.

When a Psion running MoPy and Koala is introduced into thisrenment, the
PEN-enabled appliances may then be monitored and/or dieattny the mobile Psion
device. In particular, because of the ease with which negnfients of Python code

www.manharaa.com

may be introduced into the system at run-time, it is strdagitard to add automated
rules to control home appliances according to personakpeate. This capability is
currently the subject of further research.

1.2.2 Slaved Remote Controller

A simple “thin client” mobile remote controller has beenlbuimilar in operation to
that used in the ParcTAB[18] project. The device is a deditatser interface with a
black-and-white LCD display and three buttons attached®Bld node, through which
it makes its features available. The controller device énttslaved” to a nearby PC,
which runs the software on behalf of the controller and malaifes it using Koala and
PEN.

This system works well in an office environment, where PENebstations can be
placed so as to provide complete coverage of the environmsenthat remote con-
trollers operate seamlessly throughout. Because PEN isl d&roa network, thus re-
quiring no infrastructural support or pre-configurationdperate, the Koala objects
provided by these remote controllers may also be accesskddda programs running
on mobile devices such as the Psion. This allows the rematieaiters to be used in a
wider variety of ad hoc environments.

2 Koala

The Koala ORB is an Object Request and Event Broker designgdjiport universal
compatibility between devices in an efficient manner. Itnipiemented partially as
a minimal server library written in C for the PEN platfofirand as a more complete
client and server library written in Python.

The ORB is deliberately designed to be functionally eqeimato the CORBA[11]
ORB standard but, because of its simpler design and the elofitmplementation
language, it is a great deal easier to experiment with. BezRython is cross-platform,
the bulk of Koala can be built on a PC and the resulting cods filensferred to the
Psion to be run.

For most of the applications we are building, Psion or PC avact as the user
interface, hosting Koala stub classes for different tyfedewice and importing object
references from nearby PEN nodes. The PEN devices run serbpeets which can be
manipulated by the PC or Psion remotely. For example, indhening audio example
given in Section 1, our user can cause their audio to be P)dBadsed or Stopped,
as with conventional audio equipment. The steps involvsithguKoala running under
MoPy, might look like:

1. orb = Koal a. ORB()

The program creates a Koala ORB instance through which téacoremote
Koala objects.

2Use of a Python interpreter running under PEN was considéngtcdPEN'’s threading model and limited
memory would have required a Stackless Python[17][16], @ortl would have been a prohibitive develop-
ment effort

www.manaraa.com

2. orb. add_transport (TCP_Transport)
orb. add_transport (PEN_Transport)

The program registers some previously-imported “tranSpaodules with the
ORB. These modules provide a standard API to a variety oflyidg networks,
through which the ORB may use them.

3. PEN trader = PEN _Trader. Trader (orb)

The program on the Psion creates a new PEN Trader. This tradeitors the
local radio channel via the PEN node connected to the mastdgagal port and
populates the trader with all the Koala objects accessértetely via PEN.

4. jukebox = PEN trader. Fi ndOne(" Audi oSource", [])

The Psion imports aAudi oSour ce object from the local PEN trader. This
trader contains object references for all devices acclessibally via PEN.

5. j ukebox = jukebox. narrow(" Audi oSource")

The imported reference is of typ@j ect, so it must be narrow() ed to
Audi oSour ce before it can be used.

6. j ukebox. Pl ay()

The jukebox is made to start playing audio using®hay () method. The juke-
box might also suppoRause() ,St op() , Fast For war d() , etc methods.

2.1 Object-Oriented RPC

As has been mentioned previously, the Koala ORB borrowsilyganits design from
the OMG Common Object Request Broker Architecture. CORBA&€dal systems con-
sist of interfaces specified in standard OMG Interface DiédiniLanguage[8], and
client and server side stubs to perform marshalling and usimading of Remote Pro-
cedure Calls.

Several CORBA-compliant ORBs are available with “mappir{gmsplementations)
for the Python language. Two popularimplementations aolé{ii] and omniORBpy[12].
omniORBpy uses the same C++ back-end as the original omniORBmapping for
performance reasons. Conversely the Fnorb ORB is implexdentith the excep-
tion of some low-level marshalling routines, entirely intRgn. In our experiments
the performance of the system as a whole is dominated by tleda and bandwidth
limitations of the PEN network rather than by the ORB itsé&lhorb woudl therefore
have been the preferred ORB on which to base our experimidotgever, we also re-
quire that the ORB should operate on a resource-limitedogesich as the Psion. For
this reason we wished to avoid using a full CORBA ORB impletagon, and instead
chose to build a simple CORBA-like ORB from scratch.

In Koala, interfaces are currently specified in scripts visedl-defined data struc-
ture, rather than from IDL. Interfaces are registered with ORB at run-time, both
at the client and server sides. It will automatically gete@ppropriate stub code on
demand, so that the code only exists when it is needed, sapimce. Koala doesn’t
currently have an IDL compiler, since it is sufficiently sgfatforward to generate the

www.manaraa.com

Python data structures by hand. It was decided that thetefquired to build or
modify an IDL compiler was not warranted.

The interface definition structure is also used when deaiiitig incoming method
invocations, to establish how to unmarshal the paramefython, being a scripting
language, makes this process fairly trivial, since an inognkRPC can be quickly un-
marshalled and dispatched using a sirapg! y() call.

Method invocations are marshalled via a standard marsigadihgine which sup-
ports most of the standard OMG IDL types, plus a few new ondw marshaller is
designed to produce compact output as speedily as possithlachieves respectable
results.

2.2 Events

One of the experiments we have performed with Koala is to adide event support
to the ORB. Any Koala object can be a source of events — asgnclus notifications
of a change in their state. Clients can then “watch” the dbjercchanges in its state.
The ORB manages this operation as efficiently as possiblenatifies the client via
callback when the state next changes.

Events may also contain values (current at the time of natifia) for the object’s
attributes. If an interface is derived from the special “@fetble” interface[6] then
its attributes will be marshalled into all event notificattothat object produces. This
serves two purposes — firstly, that the client need not cothambject after each noti-
fication, since it will already have the relevant attribus information, and secondly
that the attribute information received can be synchrahiehe server side to ensure
consistency.

Several Event Service implementations exist which use RP@eir underlying
transport mechanism, allowing them to run over a variety 8BOmplementations.
These services support events with arbitrary contenteefihshed from source to sink
or pulled by sink from source. There are two main problem#wiis approach:

Firstly, the use of events with arbitrary content makes pdassible to ascertain in
general where the event originated or what caused it. THisrincan make it difficult
to reason about the interactions between events. Koalagti$eo limit the scope for
confusion by stipulating that events always indicate a gkan the state of zero or
more attributes of a Koala object.

Secondly, in a high-latency environment such as a loca-&&€N network or a
wide-area network such as the Internet, a separate threathawreated by the event
source for each registered event sink, to ensure that egesntsotified to sinks in par-
allel. Serial notification would result in too significantldgs and hence performance
degradation if used with a high-latency network. Koalaédastprovides a high-level
“watch” interface, under which the ORB may then use the mpgta@priate event trans-
port for the underlying network. This allows events to baesferred by standard RPC
for example, or, as is the case with several of the PEN dewedsave prototyped, by
passing the attribute state information in periodic br@stinessages.

An example device using the Koala event mechanism is a sBaieouse (see
Figure 2). The mouse supports three attributes throughtwitégosition and the states
of its buttons may be obtained. The mouse may either be a tprardevice which

www.manaraa.com

interface Mouse : Watchabl e
attribute unsigned | ong Xpos;
attribute unsigned | ong Ypos;
attribute unsigned | ong ButtonState;

b
Figure 2: An example interface to a wireless Mouse

simply transmits a broadcast datagram via PEN wheneveti@iouae changes, or may
be a more complex device which accepts incomivag t () RPC calls and blocks

them until its position changes. Which of these techniggessed depends on the
environment for which the mouse is designed. Programs ubimgnouse need not be
aware of the distinction in order to use the device, becafiseeoattribute-watching

mechanism provided by Koala.

2.3 Asynchronous RPC

The PEN radio layer is a high-latency transport, partly a®@sequence of its low-
power operation. As a result, sequentially dispatchingtiplel method invocations
to a remote object can be prohibitively time-consuminggcsieach request is only
dispatched when the previous request has been received.

Very often, such invocations could actually have been didpd in parallel, in
which case an obvious solution is to spawn a separate thogaghth request and to
join with those threads at some later time. This is a poor @ggin for two reasons;
firstly, spawning a thread can be a very expensive operatigrarticular on platforms
such as Linux or Psion, on which thread switching is expanisiterms of CPU-cycles
(Conventional control-flow processors are not well suitethtead-switching, in fact).
Secondly, the return values of each call must be manuallgdsay each thread and
then retrieved once the threads have been explicitely sgnided.

Koala therefore supports asynchronous RPC, a techniqugngéeisto be both ef-
ficient and simple to use. The calling thread first obtains smehronous stub for
the object from the ORB. This stub dispatches all invocatiorade through it to the
same socket connection and records the sequence numbex opénation, without
waiting for the operation to return. Figure 3 shows the défece in timings between
synchronous invocation and asynchronous invocation eftimdependent RPC calls
across a moderate-latency network. Figure 4 shows sampi@iPgode to read the
status of a Mouse device using asynchronous RPC.

As the ratio of CPU cycles required per invocation to netwiatiency increases,
the two cases converge because the time spent by the sarvanoiciessing incoming
requests is dominant. As the ratio of CPU cycles per invoodtd latency decreases,
the two cases diverge because the synchronous case invobresround trip delays
and is therefore more affected by latency.

The latency per message over a TCP-based network is coniparabaginitude to
the processing time required for a typical null-Echo metimydcation. As a result, the
extra overhead incurred in performing asynchronous intiona reduces performance

www.manaraa.com

greatly. When PEN is used as the underlying network howesatamcy can exceed
CPU time per invocation by several orders of magnitude. Megteead in using asyn-
chronous invocation becomes insignificant in this case.

In general synchronous invocation provides better peréoroe over low latency
networks while asynchronous invocation is preferable dwgi latency networks.

___» Network
Message

D CPU
Working

Time

.o
4____________

Figure 3: Synchronous versus Asynchronous RPC for threspieddent invocations

anouse = nouse._async_stub()

Xpos = anouse. _g_ Xpos()

ypos = anouse. _g_Ypos()

buttons = anmpbuse. g ButtonState()

xpos()
ypos()

actual _xpos
actual _ypos

Figure 4: Example code for retrieving the initial positiomdabutton state of a Mouse
device using asynchronous RPC

The client calls methods on the stub as it would the synchusmersion, except
that all methods now return a callable Python object instédioeir normal results. The
returned object contains a link to the asynchronous stultrensequence number of the
method invocation. When it is “called” with no parametetghiecks the asynchronous
stub to see whether it has already received a response foptration. If the results
of the invocation have not been received then the calleroskald until they are. If the

www.manaraa.com

result object is deleted without being called, then the aspits from that invocation
are lost and no synchronisation occurs. Asynchronoustredjicts also support a
_ready() method, through which they can be polled for completion éuieed.

In this way, asynchronous RPC makes it extremely simplegpadth concurrent
requests and to only synchronise with those requests whenrésults are required,
by “calling” the result object. Python's callable objectwldack of strong typing made
this a very straightforward feature to implement.

3 MoPy

When the Koala project started, two ports of Python to therPskisted. The first, by
Duncan Booth, was a fairly direct port of Python 1.5.1[3]thie Posix compliance API
of Psion, with several useful extensions including a reedhlike library and support
for the Psion’s touchscreen. The second port, by Otfriedngfs], was based on
the first but extended to have a standard Psion user intesfattethe familiar button
layout, menus and access to the task panel.

While both ports were well built, stable and pleasant to tisey lacked support
for a few standard Python modules which were required foptimposes of developing
Koala.

3.1 thread

Neither port supported threads. This meant that the Koaltime would need to be
coded to be single-threaded, and to as¢ ect () calls to multiplex the various data
streams involved, such as keyboard events and incoming RB@&dly, neither port
supportecsel ect (), either — an understandable omission, since the platfceffit
does not supporel ect () .

Psion threading is extremely expensive both in terms of CiRtles and, as a con-
sequence, of power. The Psion runtime (known as EPOC32)piglheptimised for
single-threaded operation, since only a single applicatiay have control of the dis-
play at any one time. In spite of this expectation about tieégiheof Psion applications,
the platform does support a fully preemptive thread modelyiding a sound base on
which to implement the PyThread API.

MoPy now supports the thread and mutex classes nativelgrémitly, this allows
support for the more convenient threading interface. Rerémce when no new threads
are started is almost identical to that of the threadlestsspdéterformance once other
threads have started suffers slightly more, but the trddgoh the whole a favourable
one.

3The only notable exception was tfiar eadl d() function, which is presently a dirty hack since Psion
threads use opaque and transient objects as identifidner thtan plain integers - the interpreter must there-
fore make assumptions about the contents of the Epoc Thiredas in order to obtain a suitable integer
value

www.manaraa.com

3.2 socket

The existing ports did not support sockets. The Psion Pasixptiance library does
provide socket support, making the porting task trivial.
Some noteworthy limitations include:

e The inability of the TCP stack to return a machine name gid host by-
name() .

e get servbynane() andSOCK_RDMare not supported (causing MoPy to fail
the standard regression tests).

e The ability to lock the Psion completely (to the level of reqmg a soft reset)
when usingaccept () calls in particular ways.

Although latter problem is rather severe, it has only beemébto be reproducible
by forming a local-loopback connection via TCP between tiuedds in the Python
interpreter, and then closing the interpreter forcibly tvia System mentiin this situ-
ation, the device must be soft-reset using the button indlo&lp battery compartment.

Socket connections out from the Python interpreter to gphecesses and via mo-
dem to the Internet have not shown any similar problems. dytbrocessesc-
cept () ing incoming connections from other processes, such asgtom Bmx Web
application, show similar stability to outgoing conneato

3.3 seria

Each different Operating System platform appears to havawn serial API. Similarly,
Python’s serial supportis splintered between TERMIOS camats under Unix and the
si 0 module[4] under Windows, among others.

Because thei o0 and accompanyinger i al modules provide a convenient and
extensible interface to the serial ports, their API forms tasis for our_seri al
module on the Psion.

The current seri al implementation is extremely basic, supporting a 9600baud,
8-1-N mode, with no flow control. The module exports a singiadtion,open(),
which is used to open a serial port and to return the corredipgnPython object.
_seri al module objects are per-thread, to match the Psion’s sati&iface seman-
tics — using a_seri al port object from a thread other than the one in which it was
created causes an exception to be raised. To support mrdaded serial port access,
the Pythorser i al module is provided as a Psion-specific wrapper to ther i al
module functionality, providing a more standard, multtaded port model at the cost
of some efficiency.

Clients open ports using tteer i al . open(port nane) method, supplying ei-
ther “ECUART” for the serial cable, or “lIRCOMM” for an IrDA[J10] serial line.
Serial port objects currently provideead() ,wri t e() andcl ose() methods.

4This is sometimes necessary in order to quit a Python sérigtias entered an endless loop, because no
present Python implementation for Psion supports Ctrl-Gimilar

SAlthough serial via IrDA is in principle supported, it hastrimeen observed operating between devices
as yet

www.manaraa.com

A future implementation will hopefully support fully configable serial port ac-
cess, the present choice of settings being a popular logggstnon-denominator used
by the PEN prototypes.

4 Conclusion

4.1 KoalaPerformance

Table 4.1 gives results for the classic string Echo exangriestandard RedHat, Win-
dows NT and EPOC32(Psion) platforms, using the Python Infeppreter. All values
guoted are invocations-per-second.

Platform TCP Koala Python

_ Local-loopback Same-process| Native

éRlsegl\H/latzLII:’neur:(tiztjrzﬁlllz 362.7 6072 134700

asows Pentum 11 | 2939 a7 | 103400
36MH: ilgrl\]/ls;r:l].)(;’T CPU 12.19 278.3 8000

The “TCP Local-loopback” result is for method invocatiorasping between client
and server in the same process, via the TCP loopback interfabe “Koala same
process” result is for method invocation between client serder in the same process,
via Koala, without passing through TCP. The final result,ttfey native”, comes from
calling the Echo servant object directly, bypassing Koalérely.

Koala is a factor of twenty slower than native access, duelysob the overhead
of detecting and locally dispatching the invocations, apes which involves two dic-
tionary lookups and several function calls. Although diniry lookups are a well-
optimised specialty of the standard Python implementatiogy still involve hashing
and comparison of keys, inevitably introducing a large nemdf extra CPU cycles as
compared to a single function call.

In addition to the CPU-cycle costs incurred in performinginoel invocations us-
ing Koala, invocations performed via TCP loopback are affédby three further fac-
tors; the quality of local-loopback in the TCP stack implenagion, the cost of thread
switching on each platform and the speed with which operaad$e marshalled. The
results for Psion show these costs are more significaniveltd the cost of Koala-
internal invocations than under Linux or NT. Memory alldoatmay make marshalling
the extra bottleneck on the Psion, or the quality of its threaitching may have an ef-
fect (it is known to be poorly optimised). Resource limitsthie smaller device are
unlikely to affect performance - the device has 16Mb of RAM the Python inter-
preter is limited to using only 2Mb by default, and shows rgnsiof approaching this
limit while running Koala programs.

www.manaraa.com

4.2 MoPy Performance

The expected performance of the MoPy port, based on the ditipalnf the processors
and operating systems of the test machines, is around a t#dteenty worse than the
PC platforms.

Using the pystone benchm&rkloPy achieved only 90.22 pystones, as compared
to 6060 pystones on the Windows PC platform above.

4.3 Downloads

MoPy is a stable Python 1.5.2 port but lacks some finesses#gsa34 of the standard
Python regression tests, failsidnageop, sha, socket 7, andt i ne®) and skips 22.
Programs not requiring GUI access or Posix-like featuret sissel ect () support
should run unmodified on MoPy.

Some important limitations are:

e The Ctrl-C key sequence cannot be used to interrupt thepirgr. This means
that the System menu must be used to kill errant Python pseses

e Like the handles used under Epoc/32 to access the serial pc/32 file han-
dles are thread-specific and cannot be used by threads b#meithe one that
created them. When normal files are opened, the Epoc Posiplance library
against which MoPy is compiled maintains a special Posixesahread which
accepts file operations from MoPy threads and maps the filigésrs used in-
ternally to the corresponding Epoc/32 file handles. Thisige a performance
bottleneck but allows multiple threads to share Posix fiscdetors.

Unfortunately, the Posix library does not perform this miaggor thest di n,

st dout andst der r file descriptors (descriptors 0, 1 and 2), possibly for per-
formance reasons. As a result, these file descriptors cdrshared transpar-
ently between threads within MoPy. In order to cope with thistation, the
sys. stdin, sys. stdout andsys. stderr file descriptors are specially
handled in MoPy, reducing the interpreter’s performancdileraccess. Refer-
ences to file descriptors 0, 1 and 2 are transparently mapybéd torresponding
thread-specific standard 10 file handle, as a result of whietos. dup() call
must not be used to duplicate th&nDoing so can result in an Epoc/32 KERN-
EXEC error in the calling thread.

A better approach from a performance perspective would haesn to replace
the defaultst di n, st dout andst derr objects with custom Epoc-specific
versions mapping to the correct thread-specific value. Whisld avoid the per-
operation performance penalty incurred by the currenténpntation but would

6The benchmark was modified to userre() instead otl ock() , since thecl ock() function on the
Psion uses microseconds and CLOCKS_PER_SEC is erronatefgied to be 1 in theypes. h header

"See Section 2.3

8The basic time functions are available. Localised time fions, such asi mezone anddayl i ght
are not.

90s. dup() duplicates an existing file descriptor to a new file descriptue, thus potentially by-
passing the standard 10 workaround

www.manaraa.com

involve a significant re-write of portions of the interpretigleally, the interpreter
would be completely re-written to perform all interactiongth the operating
system via a single special thread within the interpretarcimlike the Posix
thread used currently, thus avoiding handle/thread iotEnaissues completely.

e MoPy currently exports thposi x module. Future versions will rename this
moduleepoc, so that poorly supported Posix API calls can be improved or
removed.

e Each thread is limited to a 64K stack. All threads share thermeter's 2Mb
heap.

MoPy is available for download from

htt p:
/I ww. uk. research. att. com ~j nw downl oadabl es/i ndex. ht m

Future improvements will be posted at the above URL.

Koala is a stable system. It is possible to write scripts Whinport Koala and
create one or more ORBs, add custom object interfaces to #mehadd customised
network transports if required. Such scripts can then exgtandard Python classes
implementing the registered interfaces, so that they magdoessed transparently by
other Koala-aware scripts.

Koala is not currently available via the web but it will be!

5 Acknowledgements

The authors wish to acknowledge Andy Hopper and Sai-Lai LAT&T Labs Cam-
bridge for their support in this work. Thanks are due to Fr&t#ijano and Duncan
Grisby of AT&T Labs Cambridge and to Diego Lopez de Ipina of ttaboratory
for Communications Engineering, Cambridge, for convigairs to give Python a try.
Thanks are also due to all the Python contributors, and Graddrossum in particular,
for producing a language which could be learnt in a singleksgd in spite of a killer
hangover.

Finally, the AT&T Laboratories Cambridge and the Enginegrand Physical Sci-
ences Research Council should be thanked for their funditigsowork.

6 Appendix A - Glossary of Terms

e Object Request Broker

The Object Request Broker is the body of software respoaéibltransparently
interfacing between objects running on different progragmess a network. The
ORB deals with the issues of accepting and unmarshallingniimeg Remote

Procedure Calls and dispatching them to the relevant ahjent of marshalling
and transmitting outgoing RPCs to remote objects.

www.manaraa.com

e interface

An “interface” is a collection of methods and attributes dise define how an
object may be manipulated remotely. The OMG's Interfaceriidin Language
(IDL) provides a set of standard data types which are usedwleéning inter-
faces, to ensure compatibility between different CORBA GRBlementations.
Interfaces may inherit from each other in a similar mann&-e- or Java classes.

e servant

The term “servant” refers to an object implementing a patécinterface and
made available through a network by the ORB. The servantlisccato by the
ORB when an incoming RPC is received, and the results of eatitation are
marshalled and returned to the caller transparently by tRB.O

e StubA “stub” is an object created by the ORB, through which a resrsmrvant
object is accessed. The stub provides the same interface{pams as the
servant but marshals the parameters of method invocatimhsiapatches them
to the corresponding servant rather than implementing tenod locally.

7 Appendix B - Example| DL
Sample IDL for the follow-me-MP3 example.

i nterface Jukebox {
t ypedef sequence<octet > Key;
t ypedef unsigned |ong State;

Key Reserve(in unsigned | ong node);
voi d Rel ease(in Key k);

void Play(in Key k);
void Stop(in Key k);
void FFRw(in Key k);
voi d RRmd(in Key Kk);
voi d Pause(in Key k);

attribute State Current State;
attribute string CurrentTrack;

H

The Jukebox IDL as supplied to the Koala ORB. The TC moduleides Type-
Code definitions for the standard OMG IDL datatypes and israssl to already have
been included.

cl ass JukeBox:
""" Interface to a very sinple MP3 Jukebox

www.manaraa.com

TC Key = TC. Sequence(TC. Cctet)
TC State = TC. ULong

| DL_Type = "Jukebox"

IDL_Interface = [
("Reserve", (TC. ULong,), TC Key),
("Rel ease", (TC Key,), TC Void),

("Play", (TC Key,), TC Void),
("Stop", (TC_Key,), TC Void),
("FFPwWd", (TC_Key,), TC. Void),
("RRwd", (TC_Key,), TC. Void),
("Pause", (TC Key,), TC Void),

(" _ATTR CurrentState", (), TC State),
(" _ATTR Current Track", (), TC. String)

References

[1] Frazer Bennett, David Clarke, Joseph B. Evans, Andy Hopflan Jones, and
David Leaske. Piconet - embedded mobile networkikdEE Personal Commu-
nications, Vol. 4, No. 5, pp 8-1®ctober 1997.

[2] Specification of the Bluetooth System Version 1.0A. Fromnt p: / / waww.
bl uet oot h. cont , July 1999.

[3] Duncan Booth. Python for Epoc Systems. Wtt p: / / dal es. rnpl c. co.
uk/ Duncan/ PyPsi on. ht m August 1999.

[4] Roger Burnham. Win32 Serial Interface Module. Frotrp: // ft p. pyt hon.
or g/ pub/ python/contrib/sio-151.zip andhttp://starship.
pyt hon. net/crew r oger.

[5] Otfried Chong. Python for Epoc. Ait pp: //www. c¢s. uu. nl / ~otfri ed/
Pyt hon/ .

[6] David Evers(AT&T Laboratories Cambridge)Omni Object Services. In prepa-
ration.

[7] Fnorb Homepage. Attt t p: / / www. f nor b. or g/ .

[8] Object Management Group. OMG IDL Syntax and SemantinsTHe Common
Object Request Broker : Architecture and SpecificationjdRav 2.4 chapter 3.
OMG, November 2000.

[9] IrDA Serial Infrared Data Link Standard Specificationsromht t p: / / wwww.
i rda.org/.

www.manaraa.com

[10] IrDA SIR Data Specification. Ahttp://wwv. i rda. or g/ st andar ds/
pubs/ | rDat a. zi p, February 1999.

[11] Object Management Groug.lhe Common Object Request Broker: Architecture
and Specificatioy.4 edition, 2000.

[12] omniORB for Python. Aht t p: / / www. ommi or b. or g/ ommi ORBpy/ .

[13] Robert Dunbar Poor. Hyphos : A Self-Organizing Wiralé¢etwork. Master's
thesis, Massachusetts Institute of Technology, June 1997.

[14] Psion PLC Homepage. At t p: / / www. psi on. co. uk/ .

[15] Jan M. Rabaey, M. Josie Ammer, Julio L. da Silva Jr., BaRatel, and Shad
Roundy. PicoRadio Supports Ad Hoc Ultra-Low Power WirelBtworking.
Wireless Computing - p42-48uly 2000.

[16] Christian Tismer. Continuations and Stackless PythtmProceedings of 8th
International Python Conferenc@anuary 2000.

[17] Christian Tismer. Stackless Python. Att p://wwv. st ackl ess. org/,
March 2000.

[18] Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold, Ka Peterson, David
Goldberg, John R. Ellis, and Mark Weiser. The ParcTab Ulbips Computing
Experiment.Mobile Computingpages 45-102, 1995.

[19] WAP Formal Specifications. Fromtt p: // wwwv. wapf orum or g/, April
1998.

www.manaraa.com

