
Python and .Net

Duncan Booth

Overview
● Introduction
● Activestate Study
● Python for .Net
● Approaching the problem
● IronPython
● Issues to be faced
● The Red Queen's Race
● Questions?

Introduction
● 2000

– Activestate study of Python for .Net
● 2003

– Brian Lloyd's Python for .Net
– Interest in native Python on .Net rekindled

● 2004
– IronPython

Why no Python for .Net?

● Impossible to implement?
– or just very hard?

● Activestate study deterred people
● Python is a moving target

Why should we want one?
– Getting rid of the Global Interpreter Lock

● hard to do on C Python
● opens the door to scalability

– Python fits better in .Net than many of the
existing .Net languages

● .Net is inherently suited to dynamic languages
– It's a platform currently closed to Python

Activestate Study
● Mark Hammond & Greg Stein
● Funded by Microsoft
● 1999 to June 2000
● Often read as saying:

– A fast implementation of Python on .Net is
impossible

● Actually says something more like:
– This implementation is very slow and we don't

know why, but we think it is hard to fix

Conclusions

There is no support for some of the features of .NET
that other frameworks will require, such as custom
attributes, PInvoke or ASP.NET.

Related topics are the mismatch between the
class/instance semantics, module/package semantics
and the exception systems.

There is no support for some Python features that
some programs will require. Examples include: string
formatting, long integers, complex numbers, standard
library, etc.

Conclusions

– The speed of the current system is so low
as to render the current implementation
useless for anything beyond demonstration
purposes.

– ...
– Some of the blame for this slow

performance lies in the domain of .NET
internals and Reflection::Emit, but some of
it is due to the simple implementation of the
Python for .NET compiler.

Conclusions
● Only a small amount of effort has gone into

analysing the performance of the runtime,
mainly due to the lack of performance
analysis tools available for .NET. Without
such tools, making performance related
changes is fruitless, as the effectiveness is
difficult to measure.

Conclusions
● Not withstanding the tuning of the runtime

system, the simple existence of the runtime
accounts for much of our performance
problem. When simple arithmetic expressions
take hundreds or thousands of Intermediate
Language instructions (via the Python
runtime) to complete, performance will
always be a struggle.

Polymorphism for arithmetic
● a = 42
● b = a + 1

– compiles to:
a.__radd__(1)

● c = a + b
– compiles to:

a.__add__(b)
– which calls b.__radd__(42)

● In principle, simple arithmetic could be
– one or two virtual method calls +
– the operation itself +
– the creation of the result.

Polymorphism for arithmetic
class PyObject {
 public virtual PyObject __add__(PyObject p) { ... }
 public virtual PyObject __radd__(PyObject p) { ... }

 public virtual PyObject __radd__(int v) {
 return this.__radd__((PyInt)v);
 }
};
class PyInt: PyObject {
 override PyObject __add__(PyObject p) {
 return p.__radd__(this.value);
 }
 override PyObject __radd__(int v) {
 try {
 return (PyInt) checked(this.value + v);
 } catch(OverflowException) {
 return (PyLong)((long)this.value + v);
 }
 }
}

Activestate Study Limitations
● Modelled C Python API

– not object oriented
– functions had to test the types of their arguments

● PyObject was a value type
– so no use of inheritance/polymorphism

Python for .Net
● Implementation by Brian Lloyd
● Bridges C-Python to the CLR
● You can:

– run existing Python scripts
– use existing libraries

● and:
– import CLR classes
– access attributes and methods
– subclass a CLR class?
– partly works under Mono

Python for .Net
● You cannot:

– use a Python class from the CLR
– script an ASP.Net page

Value types vs Reference
types

items = CLR.System.Array.CreateInstance(Point, 3)
for i in range(3):
 items[i] = Point(0, 0)

items[0].X = 1 # won't work!!

Value types vs Reference
types

items = CLR.System.Array.CreateInstance(Point, 3)
for i in range(3):
 items[i] = Point(0, 0)

This _will_ work.

item = items[0]
item.X = 1
items[0] = item

● This is probably going to be an issue with any
Python running under the CLR

How fast is it?
● Simple assignment into a hashtable

– slower by a factor of 100
● Every call across the bridge is a bottleneck

– this is very similar to Python and COM
● But:

– Python part of code runs at normal C Python
speed

– CLR code runs at normal CLR speed

Approaching the problem
● July 2003 onwards

– I re-read the Activestate paper
– Got the prototype running on .Net 1.0
– Pystone about 20-25 times slower than Python

2.3
– Refactored to use reference classes for Python

objects
– Various micro optimisations
– Finally realised where the bottleneck lies

● (every function call used reflection)
– Plans shelved when ...

IronPython
● Being Developed by Jim Hugunin
● Fast

– IronPython-0.2 is 1.4x faster than Python-2.3 on the
standard pystone benchmark.

● Integrated with the Common Language
Runtime
– IronPython code can easily use CLR libraries and Python

classes can extend CLR classes.
● Fully dynamic

– IronPython supports an interactive interpreter and
transparent on-the-fly compilation of source files just like
standard Python.

IronPython
● Optionally static

– IronPython also supports static compilation of Python code
to produce static executables (.exe's) or static libraries
(.dll's)

● Managed and verifiable
– IronPython generates verifiable assemblies with no

dependencies on native libraries that can run in
environments which require verifiable managed code.

● Under development
– IronPython is currently an unreleased research prototype.

(bullet points from http://ironpython.com)

IronPython

from http://www.python.org/pycon/dc2004/papers/9

Issues to be faced
● N.B.

– The following slides are based on my
experiences

– The solutions used in IronPython may be very
different

The problem with delegates
● The CLR does not permit use of function

pointers in validated code
● Delegates can replace function pointers for:

– bound methods
– static functions

● BUT
– there is no delegate equivalent to unbound

methods
– also delegates cannot point to constructors

Why unbound methods matter
● Using Reflection to find and call a method on

an object is slow.
– by about a factor of 100 (again)

● Alternative to Reflection is:
– create unbound method objects and store them

in a dictionary on the class.
– find and call method by:

● dictionary lookup (or simple string comparison)
● then either call directly or create bound method.

Solution: Generate wrappers
● Given a class:
class Foo {
 public int bar(string s) { ... }
}

● compile a wrapper automatically:
class FooClass {
 static PyObject bar(PyObject self, PyObject s) {
 return (PyInt)(

 ((Foo)self).bar((string)s));
 };
}

●__getattribute__ defined to create an unbound
method object with a delegate to the static bar.

Calling a function is slow?
● C-Python function calls use generic prototype:

– Functions receive:
● tuple of positional arguments
● dictionary of keyword arguments

– Arguments have to be unscrambled in most
general way

● BUT:
– Python functions always expect a fixed number

of arguments
– Calls usually pass a fixed number of arguments

Calling functions
● These functions all expect 3 arguments

– (although they may be called in quite different
ways):

def f1(a=0, b=1, c=2): pass
def f2(a, *b, **c): pass
def f3(a, (p, q), c): pass

● Compiling a call, we know
– how many arguments are passed
– not: how many are expected

● Use polymorphism to optimise the call

Calling functions
def f1(a=0, b=1, c=2): ...

● The def statement compiles to (roughly):
f1 = new PyFunction3(new PyFunction3Delegate(f1_code),

new string[] { “a”, “b”, “c” },
new PyObject[] { (PyInt)0, (PyInt)1, (PyInt)2 })

● A call: f1(x) compiles to:
f1.__call__(x)

– Implementation:
return this.delegate(arg1, this.defaults[1],
this.defaults[2]);

Calling Functions
● __call__ is overloaded:

– for 0..n arguments
– for more than n arguments
– for keyword arguments

● Also need n+1 classes for:
– PyFunction0..n (and many or keywords)
– PyBoundMethod0..n-1 (and many or keywords)
– etc.

● n had better not be too large!

Optimising global variables
● Setting a global should simply set a static

variable
● Accessing a global should retrieve the static

variable
● globals() returns a dictionary-like object

– __getitem__, __setitem__ for known variables
refer to static values

– unknown global variables are held in the
dictionary

● Updates to module variables from outside
module done through globals() pseudo-
dictionary

Optimising builtins
● References to builtins may be optimised at

compile time
– but only if no global is set to explicitly hide the

builtin
● Indirectly setting a global that masks an

optimised builtin should raise an exception
● Globals set once (e.g. by import) could also

be used for optimisations (and made
readonly)

Optimising Globals/Builtins
from CLR.Python import overloads
from CLR.System import Int32, String

class C:
 def foo(a, b=””) [
 overloads((Int32,), (Int32, String))]:
 pass

(subject to PEP318 ever settling down, the exact code could look different)

● This might
– generate a class usable by other CLR languages
– with two overloaded public 'foo' methods.

● and
– reject any attempt to redefine 'overloads' or 'C' in the module

Optimising Globals/Builtins
from CLR.Python import overloads
from CLR.System import Int32, String

class C:
 [overloads((Int32,), (Int32, String))]
 def foo(a, b=””) :
 pass

(subject to PEP318 ever settling down, the exact code could look different)

● This might
– generate a class usable by other CLR languages
– with two overloaded public 'foo' methods.

● and
– reject any attempt to redefine 'overloads' or 'C' in the module

The Red Queen's Race
● IronPython needs:

– first public release (in any form)
– development of runtime and libraries
– bringing in line with Python 2.4

● generator comprehensions
● decorators
● relative imports

● Can it get there?
– Maybe only if Python slows down

The Red Queen's Race

"A slow sort of country!" said the Queen. "Now,
here, you see, it takes all the running you can

do, to keep in the same place. If you want to get
somewhere else, you must run at least twice as

fast as that!"

"I'd rather not try, please!" said Alice. "I'm quite
content to stay here--only I am so hot and

thirsty!"

Questions?

