
Scripting C with Python

Duncan Booth
duncan.booth@suttoncourtenay.org.uk



Introduction
● Why?
● What do I need to know?
● Examples
● Error handling
● Memory allocation
● Multi-threading



Why mix C and Python?
● Add scripting to your C/C++ application 

(embedding)
● Glue

– use Python to write different front-end drivers to 
a common library

● Use a C library
– for speed
– because it implements functionality not present 

in Python
● Test Driven Development

– test C code using Python



When to mix them
● Write the Python first

– Writing Python is faster.
– Use it to work out the best implementation, then 

convert speed sensitive code to C
● then write C

– (but only if you have to)



Real life intervenes
● More usually

– Add Python to an existing codebase
– Existing design decisions may make it hard



Embedding vs Extending
● Embedding

– Add scripting to an existing program.
– Main program is C/C++
– Python interpreter is called when needed
– Almost always used with Extending

● Extending
– Gives Python access to a module written in 

C/C++
– add functionality to Python
– speed up where Python is slow

● (although Psyco is an alternative)



C API or using a toolkit
● Is there a pre-existing library that does the 

job?
– Don't reinvent the wheel

● Do you just want to call C functions in a dll/so
– look at ctypes

● Do you prefer writing Python rather than C?
– yes: Look at Pyrex
– no: still look at Pyrex



C API or using a toolkit
● Do you need support for other languages 

(Perl, Tcl etc.)
– SWIG

● Are we talking C++ here?
– Boost.Python



ctypes
● Call C functions exported from library
● Create and manipulate C compatible types 

and data structures
● No need to write any C code
● No C compiler required



ctypes Example



Pyrex
● Python syntax with extensions

– define Python functions, classes
● usable from Python and Pyrex

– define classes implemented in C
● usable from Python and Pyrex

– define C functions
● callable only from Pyrex and C

● Supports embedding as well as extending
● Lets you use Python syntax running at C 

speed



Pyrex Example



Handling errors and exceptions
● C error returns must be converted to Python 

exceptions
● C++ exceptions must be caught and 

converted to Python exceptions
– may require 'C' wrapper around 'C++' code

● Calling Python API
– errors indicated by return code
– Python exception will have been set
– must propagate error return upwards



Handling errors and exceptions
● ctypes

– checks stack to detect wrong number of 
arguments

– catches memory faults
● Pyrex

– Automatic checking for Python API errors



Memory Allocation
● Objects used in Python should be allocated 

through Python API
– Lifetime determined by

● reference counting
● garbage collection

● C applications use custom memory schemes
– object lifetime may not match Python's 

expectations
– copy or wrap objects?

● Callbacks into Python
– avoiding duplicate wrapped objects



Multi-threaded applications
● Global Interpreter Lock

– Release GIL before calling long running code
– Reclaim GIL on return

● Callbacks
– Claim/release GIL on callbacks
– Need thread data for this

● When GIL is released
– Python objects may mutate
– Python objects may be freed
– Don't borrow references



Summary
● Python & C work great together
● Python

– Fast development
● C

– Runs faster
– Existing libraries


